Supermassive Black Holes: Revealing Dark Matter. Or: How I Learned to Stop Worrying and Love Gravity

The mystery of “Dark Matter” is one that has puzzled physicists since Fritz Zwicky first started noticing the conundrum of “missing mass” in his observation of galaxies in clusters. He noticed that some invisible force was asserting gravitational influence on the things we can see (planets, stars, comets) but that whatever the force was, it was invisible.

Scientists estimate that about 23% of the Universe is made up of dark matter, and now researchers think that supermassive black holes may be the key to understanding how dark matter works.

From PhysOrg:

In the early Universe clumps of dark matter are thought to have attracted gas, which then coalesced into stars that eventually assembled the  we see today. In their efforts to understand  and evolution, astronomers have spent a good deal of time attempting to simulate the build up of dark matter in these objects.

The UNAM astronomers, Dr. Xavier Hernandez and Dr. William Lee, calculated the way in which the  found at the centre of galaxies absorb dark matter. These black holes have anything between millions and billions of times the mass of the Sun and draw in material at a high rate.

The researchers modeled the way in which the dark matter is absorbed by black holes and found that the rate at which this happens is very sensitive to the amount of dark matter found in the black holes’ vicinity. If this concentration were larger than a critical density of 7 Suns of matter spread over each cubic light year of space, the black hole mass would increase so rapidly, hence engulfing such large amounts of dark matter, that soon the entire galaxy would be altered beyond recognition.

Dr. Hernandez explains, “Over the billions of years since galaxies formed, such runaway absorption of dark matter in black holes would have altered the population of galaxies away from what we actually observe.”

Their work therefore suggests that the density of dark matter in the centres of galaxies tends to a constant value. By comparing their observations to what current models of the evolution of the Universe predict, Hernandez and Lee conclude that it is probably necessary to change some of the assumptions that underpin these models – dark matter may not behave in the way scientists thought it did.

Just for the record, if I ever go into a crazy science field, I’m changing my name to Xavier. So what does it all mean? A theoretical greater understanding of our universe and how it works. I’m calling that Fucking Awesome.

A preprint of the paper can be seen here.


~ by K. Ritcheson on March 22, 2010.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: